当前位置:首页 » 手工制作 » 如何平分一个不规则的蛋糕
扩展阅读
王者荣耀蛋糕图片四寸 2024-11-16 23:38:51
大型活动蛋糕多少钱 2024-11-16 22:51:15

如何平分一个不规则的蛋糕

发布时间: 2022-04-23 10:00:31

A. 一块不规则的蛋糕上取一点,要经过这一点一刀平均分开,问:怎样切(数学建模问题)

找一个细长的棍状物放在蛋糕下面(例如筷子),旋转蛋糕以使筷子通过蛋糕上p点相应的位置,然后找到平衡点,沿着筷子的方向切就是了。

原理:若截面对某轴的静矩为零,则该轴必通过截面形心。

B. 怎样把不规则的蛋糕平均分成两份

把六块蛋糕平均分成两份,每份是这块蛋糕的2分之1,每份有3块
不懂可追问,有帮助请采纳,谢谢!

C. 五个小朋友分一个蛋糕,只准切三刀,怎么

挥一刀吓走一个小朋友,然后两刀把蛋糕切成四等份。

解析:5个小朋友,只切三刀分蛋糕,无论如何都无法分,只有剩下四个小朋友才能分清楚。

这种文字游戏有个明显的特点,题面很普通,但答案十分气人或十分搞笑,有时,会起到间接骂人的作用。一经破解,令人喷饭。所以问问脑筋急转弯在party上也有调节气氛的作用。

(3)如何平分一个不规则的蛋糕扩展阅读:

经典脑筋急转弯:

1、小明放学回家对妈妈说:“家里有一个地方,我想坐就坐,而你却不能坐”你知道这是什么地方?--答案:妈妈的膝盖上。

2、一个人有一个,全国12亿人只有12个,这东西是?--答案:12生肖。

3、乌龟梦见自己中了一百元大奖,醒来梦想成真,它接下去该怎么办?--答案:再睡一觉。

4、一个商人破产了,有半数朋友不认识他了,为什么?--答案:因为还有一半朋友不知道他破产了。

5、动物园里大象的鼻子最长,那谁是第二个长的呢?--答案:小象。

D. 一个蛋糕要平均分给5个小朋友,但只能切三刀,应该怎么切

1、五等分高度,第一步,先1/5。第二步,4/5均分。第三步,叠起来再均分。总共三刀。

2、先横着将上面五分之一切掉,给一个小朋友吃。剩下五分之四横着再切一刀分成两块五分之二,再竖着切成两块一样大的(不规则的也没关系,一定会有一条平分线的),给四个小朋友吃。 大切完三刀再用手切两刀切成个大字,不平均就不平均了,切六块,一刀切掉一个小朋友,剩下两刀切蛋糕四块。

3、圆形的话,切三刀就成六块了,分五块,可以让圆的面积(S=π×r²)除以5。

(4)如何平分一个不规则的蛋糕扩展阅读:

1、家用平齿水果刀

这类刀是最常见的,基本每家厨房都会有,当您在没有专用蛋糕刀的时候,这种刀也完全可以暂解燃眉之急,而且平齿刀的好处是不易掉渣。但是由于大多数蛋糕质地比较柔软,用这种刀从上向下切的时候,会容易将蛋糕压扁,影响美观。

2、粗齿蛋糕刀

这类刀具是专用的蛋糕和面包切刀,锯齿呈半圆月牙状,锯齿较长。使用这种刀切蛋糕和面包时,要采用锯的方式,从蛋糕边缘开始,来回拉伸式的切法,很容易切出完美的切面。

3、细齿蛋糕刀

这类蛋糕刀由于锯齿较细较短,所以不适合切面包。切蛋糕的手法同粗齿蛋糕刀,但面对质地较松散的蛋糕时,如果手法过重过快,可能会有轻微的掉渣现象。

E. 5个小朋友分一个蛋糕,只准切三刀,该怎样才能平分呢

假设这个蛋糕通常都是是圆的。
首先,过圆心呈十字状横竖各切一刀,然后在蛋糕顶部1/5厚度处横切一刀。
这样下来是4小块+4大块。
4小块给一个小朋友,正好是1/5;其余4块各是4/5*1/4=1/5.
这样就实现了楼主提出的平分要求。

F. 三个极度自私的人分一个蛋糕,采用什么策略,能让三人都觉得公平

这是着名的 cake cutting 问题。Fair division
所谓“三人都满意”,数学上有多种可能的涵义,常用的两种是:
公平:三人都认为自己的一份不少于 1/3

无怨:三人都不觉得别人拿得比自己多 Envy-free

无怨一定公平,但是公平不一定无怨。
daniel 的答案,上面这两个条件都不满足,只会引起自责,不算满意/公平,是错的。

两人的情况很简单:我切,你选。
三人的情况曾经长时间没有解,40 年代找到公平程序,80 年代发表无怨程序。
多人的无怨切法还没有完满解决。

daniel 的答案是一种“走刀程序 moving-knife procere”。真正达到“无怨”的 走刀程序 见 Stromquist moving-knife procere,80 年代由 Stromquist 提出。
需要一个裁判,从左向右走刀,三人拿着刀站在裁判右边,保持在平分右边蛋糕的位置(按各自标准)。一旦三人中有一个喊“切”,此人获得裁判左边的蛋糕。然后三人中位于中间位置的那位(B)把刀切下。没蛋糕的两位中,离裁判近的那位获得中间那块,远的那位获得右边那块。
容易证明,三人都认为自己的那份最大。
走刀程序的坏处是连续,假设了两人同时叫停的概率为零,假设了蛋糕无限可分,现实中不好操作。
一个离散程序是 Selfridge 60 年代由 Selfridge 提出,90 年代由 Conway 独立提出并发表。
A 按照自己的标准把蛋糕切三块

如果 B 认为最大的两块一样大,那么把 C,B,A 的顺序选蛋糕,结束。
如果 B 认为其中一块 M 最大,他就从 M 削去一小块 R,使之与第二大的那块一样大,把 R 放在一边。

C 先选。如果 C 没有选 M,那么 B 必须选 M,否则一切正常,A 拿最后一块。

B 和 C 中没拿 M 的那位,把 R 分成三份,让 B 和 C 中拿了 M 的那位先挑一份,然后 A 选一份,最后一份留给自己。结束。
可以证明,三人都认为自己的那一份最大,证明见维基页面。

四人无怨分割的走刀程序,1997 年由 Brams, Taylor and Zwicker 提出。多人无怨分割的离散程序,1995 年由 Brams and Taylor 提出,但是需要切的次数可能无上界,因此应该说尚未完满解决。

以上是“无怨”的切法。“公平”的切法要简单一些,这里有一个很通俗的介绍:Mathematics In Europe,波兰数学家们做了很大贡献。针对 n 人的一般公平程序如下(Banach and Knaster 提出):
先排好顺序。

第一个人切出他认为的 1/n。

按顺序,每个人都判断一下,这一份是不是太大。是的话就削掉一点并进原来的蛋糕,不是的话跳过。

所有人都判断过后,这一块给最后削过蛋糕的那位;如果没有人削过蛋糕,这块给第一个人。

重复 2-4,直至最后剩两人,用我切你选的方式决定。

n=3 的简化程序由 Steinhaus 在 1943 年提出。@朴三世 的答案是 Steinhaus 程序的过简版本,是错的。存在的问题是,A 先选,B 第二个选,如果 B 选走的那杯不是 A 认为的最少的,那么整个过程就不公平了。

====补充====
为何 公平 不一定 无怨?这当然首先是根据数学定义,其表述就已经点明了这个逻辑关系。
而这两个概念的现实意义,是因为同一块蛋糕对每个人的价值不同。
比如下面是一个夸张的例子:
假设一个蛋糕,上面有不同的口味,巧克力,奶油,草莓等。参与分蛋糕的人口味不同,因此对不同部分赋予的价值也不同。这里几何上简单的平均分配就不能解决问题,而公平分配也不一定能让人满意。这就是这个数学问题要解决的问题。

也是在这个意义上,许多人坚持的“第一个切的最后选”,不论是@王成的五字超简版,还是@陈启航的冗余“严谨”版,都是错误的,前者甚至没有一个完整的算法。 第一个切的人会按自己的标准尽量平分,但这不一定是其他两人的标准,使得另两人间可能出现不公平的情况。

比如 A-B 切 C-B-A 选的“策略”,以下就是一个不公平的情况:
A 按照尺寸切出自以为的 1/3 和 2/3,但在 BC 看来,因为小的一块有更多巧克力,所以价值分别是 3/7 和 4/7。此时 B 的最佳策略是切出自以为的 3/7,3/7 和 1/7,C 眼光相同,但在 A 看来分别是 1/3,1/2 和 1/6,其中第二块尺寸更大,只是巧克力不多。如果按照 C-B-A 的顺序选,那么 A 只可能拿到他眼中的 1/6,和 BC 眼中的 1/7。

G. 一个蛋糕切三刀,怎么切成等分的五份

方法一:

第一刀:对准圆中心,一刀两半。(4~9)

第二刀:以第一刀为基础,找72度切下去。(1~6)

第三刀:以第二为基础(就底线),再找72度的位置切下第三刀。(2~7)蛋糕分了六份,其中两分是第二到切下去后 得出的那72度的两块,那就称第A,C份。那第B,D份就是第三刀在刚才说的,有两份是108度的上面切下去,又形成了对角的两份72度面积的蛋糕。
现在有四份了。那么108度-72度=36度。最后剩下了两块36度面积的蛋糕(E)。就分成了平均以72度面积的5份蛋糕。

H. 5个小朋友分一个蛋糕,只准切三刀,该怎样才能平分

三刀切五份蛋糕的步骤如下:

1、准备一个蛋糕,我们以常规的圆形蛋糕为例,如下图

以上图片为示意图,供参考。

I. 把一块蛋糕切三刀平均分给五个小朋友,请问怎么分

1.先横着将上面五分之一切掉,给一个小朋友吃.
剩下五分之四横着再切一刀分成两块五分之二,再竖着切成两块一样大的(不规则的也没关系,一定会有一条平分线的),给四个小朋友吃.
2.大不了切完三刀再用手切两刀
3.切成个大字,不平均就不平均了,不吃一边去
4.切六块,每个小朋友一块,自己一块

J. 分一个蛋糕,问怎样的分法才公平

事实上,对于两个人分蛋糕的情况,经典的“你来分我来选”的方法仍然是非常有效的,即使双方对蛋糕价值的计算方法不一致也没关系。首先,由其中一人执刀,把蛋糕切分成两块;然后,另一个人选出他自己更想要的那块,剩下的那块就留给第一个人。由于分蛋糕的人事先不知道选蛋糕的人会选择哪一块,为了保证自己的利益,他必须(按照自己的标准)把蛋糕分成均等的两块。这样,不管对方选择了哪一块,他都能保证自己总可以得到蛋糕总价值的 1/2 。
不过,细究起来,这种方法也不是完全公平的。对于分蛋糕的人来说,两块蛋糕的价值均等,但对于选蛋糕的人来说,两块蛋糕的价值差异可能很大。因此,选蛋糕的人往往能获得大于 1/2 的价值。一个简单的例子就是,蛋糕表面是一半草莓一半巧克力的。分蛋糕的人只对蛋糕体积感兴趣,于是把草莓的部分分成一块,把巧克力的部分分成一块;但他不知道,选蛋糕的人更偏爱巧克力一些。因此,选蛋糕的人可以得到的价值超过蛋糕总价值的一半,而分蛋糕的人只能恰好获得一半的价值。而事实上,更公平一些的做法是,前一个人得到所有草莓部分和一小块巧克力部分,后面那个人则分得剩下的巧克力部分。这样便能确保两个人都可以得到一半多一点的价值。
但是,要想实现上面所说的理想分割,双方需要完全公开自己的信息,并且要能够充分信任对方。然而,在现实生活中,这是很难做到的。考虑到分蛋糕的双方尔虞我诈的可能性,实现绝对公平几乎是不可能完成的任务。因此,我们只能退而求其次,给“公平”下一个大家普遍能接受的定义。在公平分割 (fair division) 问题中,有一个最为根本的公平原则叫做“均衡分割” (proportional division) 。它的意思就是, 如果有 n 个人分蛋糕,则每个人都认为自己得到了整个蛋糕至少 1/n 的价值 。从这个角度来说,“你
来分我来选”的方案是公平的——在信息不对称的场合中,获得总价值的一半已经是很让人满意的结果了。

如果分蛋糕的人更多,均衡分割同样能够实现,而且实现的方法不止一种。其中一种简单的方法就是,每个已经分到蛋糕的人都把自己手中的蛋糕分成更小的等份,让下一个没有分到蛋糕的人来挑选。具体地说,先让其中两个人用“你来分我来选”的方法,把蛋糕分成两块;然后,每个人都把自己手中的蛋糕分成三份,让第三个人从每个人手里各挑出一份来;然后,每个人都把自己手中的蛋糕分成四份,让第四个人从这三个人手中各挑选一份;不断这样继续下去,直到最后一个人选完自己的蛋糕。只要每个人在切蛋糕时能做到均分,无论哪块被挑走,他都不会吃亏;而第 n 个人拿到了每个人手中至少 1/n 的小块,合起来自然也就不会少于蛋糕总价值的 1/n 。虽然这样下来,蛋糕可能会被分得零零碎碎,但这能保证每个人手中的蛋糕在他自己看来都是不小于蛋糕总价值的 1/n 的。
还有一种思路完全不同的分割方案叫做“最后削减人算法”,它也能做到均衡分割。我们还是把总的人数用字母 n 来表示。首先,第一个人从蛋糕中切出他所认为的 1/n ,然后把这一小块传给第二个人。第二个人可以选择直接把这块蛋糕递交给第三个人,也可以选择从中切除一小块(如果在他看来这块蛋糕比 1/n 大了),再交给第三个人。以此类推,每个人拿到蛋糕后都有一次“修剪”的机会,然后移交给下一个人。规定,最后一个对蛋糕大小进行改动的人将获得这块蛋糕,余下的 n - 1 个人则从头开始重复刚才的流程,分割剩下的蛋糕。每次走完一个流程,都会有一个人拿到了令他满意的蛋糕,下一次重复该流程的人数就会减少一人。不断
这样做下去,直到每个人都分到蛋糕为止。
第一轮流程结束后,拿到蛋糕的人可以保证手中的蛋糕是整个蛋糕价值的 1/n 。而对于每个没有拿到蛋糕的人来说,由于当他把蛋糕传下去之后,他后面的人只能减蛋糕不能加蛋糕,因此在他看来被拿走的那部分蛋糕一定不到 1/n ,剩余的蛋糕对他来说仍然是够分的。在接下来的流程中,类似的道理也同样成立。更为厉害的是,在此游戏规则下,大家会自觉地把手中的蛋糕修剪成自认为的 1/n ,耍赖不会给他带来任何好处。分蛋糕的人绝不敢把蛋糕切得更小,否则得到这块蛋糕的人就有可能是他;而如果他把一块大于 1/n 的蛋糕拱手交给了别人,在他眼里看来,剩下的蛋糕就不够分了,他最终分到的很可能远不及 1/n 。

这样一来,均衡分割问题便完美解决了。不过,正如前面我们说过的,均衡条件仅仅是一个最低的要求。在生活中,人们对“公平”的概念还有很多更不易形式化的理解。如果对公平的要求稍加修改,上述方案的缺陷便暴露了出来。让我们来看这样一种情况:如果 n 个人分完蛋糕后,每个人都自认为自己分得了至少 1/n 的蛋糕,但其中两个人还是打起来了,可能是什么原因呢?由于不同的人对蛋糕各部分价值的判断标准不同,因此完全有可能出现这样的情况——虽然自己已经分到了至少 1/n 份,但在他看来,有个人手里的蛋糕比他还多。看来,我们平常所说的公平,至少还有一层意思——每个人都认为别人的蛋糕都没我手里的好。在公平分割理论中,我们把满足这个条件的分蛋糕方案叫做免嫉妒分割 (envy-free division) 。

免嫉妒分割是一个比均衡分割更强的要求。如果每个人的蛋糕都没我多,那我的蛋糕至少有 1/n ,也就是说满足免嫉妒条件的分割一定满足均衡的条件。但反过来,满足均衡条件的分割却不一定是免嫉妒的。比方说, A 、 B 、 C 三人分蛋糕,但 A 只在乎蛋糕的体积, B 只关心蛋糕上的草莓颗数, C 只关心蛋糕上的巧克力块数。最后分得的结果是, A 、 B 、 C 三人的蛋糕体积相等,但 A 的蛋糕上什么都没有,B 的蛋糕上有一颗草莓两块巧克力,C 的蛋糕上有两颗草莓一块巧克力。因此,每个人从自己的角度来看都获得了整个蛋糕恰好 1/3 的价值,但这样的分法明显是不科学的—— B 、 C 两人会互相嫉妒。
之前我们介绍的两种均衡分割方案,它们都不满足免嫉妒性。就拿第一种方案来说吧,如果有三个人分蛋糕,按照规则,首先应该让第一人分第二人选,然后两人各自把自己的蛋糕切成三等份,让第三人从每个人手中各挑一份。这种分法能保证每个人获得至少 1/3 的蛋糕,但却可能出现这样的情况:第三个人从第二个人手中挑选的部分,恰好是第一个人非常想要的。这样一来,第一个人就会觉得第三个人手里的蛋糕更好一些,这种分法就不和谐了。