① 将一个长方体型蛋糕切5刀最多能切成几块
解:在平面上,一刀2块,2刀4块,3刀7块,4刀16块.......即第n刀与前面的n-1刀相交,增加n块。即第n刀可切1+(n+1)n/2块。
对立体图形来说,增加了拦腰横切一刀的做法。可以增加2(1+(n-1)n/2)块。
采取水平方向切2刀 ,竖直方向切3刀方案,得到12块;
采取水平方向切3刀 ,竖直方向切2刀方案,得到21块;
采取水平方向切4刀 ,竖直方向切1刀方案,得到22块;
∴最后一个方案最多。
② 一个蛋糕五刀切成二十份
先把蛋糕切成两层,然后从上面三刀切成七块,再加一刀十块,总共两层,所以是二十块
③ 一些蛋糕平均分成5份,每份是4块,还剩下一块,如果分成7份,每份有多少块
蛋糕平均分成5份,每份是4块,还剩下一块,那蛋糕一共是5×4+1=21块,21÷7=3块所以分成7份每份有3块。
④ 切蛋糕问题,改刀叔为n,块数是什么要有n的代数式!
由于刀数较多,难于清点判断,故必须探求一般规律.为此,我们来看一看下图中的几个特殊事例,由于问的是最多分成几块,不难从图中看出切法应具有如下规律:任何二条切痕两两不平行,任何三条切痕不共点.
然后我们再来看一看按照上述切法,所得块数的规律:
刀数
块数
规律
1
2
2=1+1
2
4
4=1+1+2
3
7
7=1+1+2+3
4
11
11=1+1+2+3+4
5
16
16=1+1+2+3+4+5
…
…
…
由上面的规律猜想,若切n刀.则块数应为 ,此公式可用数学归纳法证明.
利用上面的公式,我们很容易解决上面提出的两个问题:
①已知蛋糕分成211块,故
.解得n=20或n=-21,由于刀数是自然数,所以n=20(刀).
② 已知切2000刀,故
像上述通过有限的特殊事例得出一般结论的推理方法叫归纳法.我们可通过下表并利用归纳法来猜想切痕的交点,切痕相互分成的线段的一般规律:
刀数
1
2
3
4
5
...
n
交点个数
0
1
3
6
10
...
线段条数
1
4
9
16
25
...
⑤ 一个圆形蛋糕垂直切5刀怎样切最多
就是画个圆,画一条直线 ,第二条直线与这条直线相交,第三条直线与这两条直线都相交,第四条直线与这三条直线都相交,第五条直线与前四条相交,最后数数几个吧,不知道您明白了吗,希望能帮到您