当前位置:首页 » 手工制作 » 一块蛋糕如何分配
扩展阅读
泉州哪里学蛋糕抹面裱花 2025-01-16 10:12:29
给领导的蛋糕图片大全 2025-01-16 10:07:28
千层蛋糕的糊能放多久 2025-01-16 09:58:28

一块蛋糕如何分配

发布时间: 2022-07-27 07:43:57

如何实现平等的分蛋糕

事实上,对于两个人分蛋糕的情况,经典的“你来分我来选”的方法仍然是非常有效的,即使双方对蛋糕价值的计算方法不一致也没关系。首先,由其中一人执刀,把蛋糕切分成两块;然后,另一个人选出他自己更想要的那块,剩下的那块就留给第一个人。由于分蛋糕的人事先不知道选蛋糕的人会选择哪一块,为了保证自己的利益,他必须(按照自己的标准)把蛋糕分成均等的两块。这样,不管对方选择了哪一块,他都能保证自己总可以得到蛋糕总价值的 1/2 。
不过,细究起来,这种方法也不是完全公平的。对于分蛋糕的人来说,两块蛋糕的价值均等,但对于选蛋糕的人来说,两块蛋糕的价值差异可能很大。因此,选蛋糕的人往往能获得大于 1/2 的价值。一个简单的例子就是,蛋糕表面是一半草莓一半巧克力的。分蛋糕的人只对蛋糕体积感兴趣,于是把草莓的部分分成一块,把巧克力的部分分成一块;但他不知道,选蛋糕的人更偏爱巧克力一些。因此,选蛋糕的人可以得到的价值超过蛋糕总价值的一半,而分蛋糕的人只能恰好获得一半的价值。而事实上,更公平一些的做法是,前一个人得到所有草莓部分和一小块巧克力部分,后面那个人则分得剩下的巧克力部分。这样便能确保两个人都可以得到一半多一点的价值。
但是,要想实现上面所说的理想分割,双方需要完全公开自己的信息,并且要能够充分信任对方。然而,在现实生活中,这是很难做到的。考虑到分蛋糕的双方尔虞我诈的可能性,实现绝对公平几乎是不可能完成的任务。因此,我们只能退而求其次,给“公平”下一个大家普遍能接受的定义。在公平分割 (fair division) 问题中,有一个最为根本的公平原则叫做“均衡分割” (proportional division) 。它的意思就是, 如果有 n 个人分蛋糕,则每个人都认为自己得到了整个蛋糕至少 1/n 的价值 。从这个角度来说,“你
来分我来选”的方案是公平的——在信息不对称的场合中,获得总价值的一半已经是很让人满意的结果了。
如果分蛋糕的人更多,均衡分割同样能够实现,而且实现的方法不止一种。其中一种简单的方法就是,每个已经分到蛋糕的人都把自己手中的蛋糕分成更小的等份,让下一个没有分到蛋糕的人来挑选。具体地说,先让其中两个人用“你来分我来选”的方法,把蛋糕分成两块;然后,每个人都把自己手中的蛋糕分成三份,让第三个人从每个人手里各挑出一份来;然后,每个人都把自己手中的蛋糕分成四份,让第四个人从这三个人手中各挑选一份;不断这样继续下去,直到最后一个人选完自己的蛋糕。只要每个人在切蛋糕时能做到均分,无论哪块被挑走,他都不会吃亏;而第 n 个人拿到了每个人手中至少 1/n 的小块,合起来自然也就不会少于蛋糕总价值的 1/n 。虽然这样下来,蛋糕可能会被分得零零碎碎,但这能保证每个人手中的蛋糕在他自己看来都是不小于蛋糕总价值的 1/n 的。
还有一种思路完全不同的分割方案叫做“最后削减人算法”,它也能做到均衡分割。我们还是把总的人数用字母 n 来表示。首先,第一个人从蛋糕中切出他所认为的 1/n ,然后把这一小块传给第二个人。第二个人可以选择直接把这块蛋糕递交给第三个人,也可以选择从中切除一小块(如果在他看来这块蛋糕比 1/n 大了),再交给第三个人。以此类推,每个人拿到蛋糕后都有一次“修剪”的机会,然后移交给下一个人。规定,最后一个对蛋糕大小进行改动的人将获得这块蛋糕,余下的 n - 1 个人则从头开始重复刚才的流程,分割剩下的蛋糕。每次走完一个流程,都会有一个人拿到了令他满意的蛋糕,下一次重复该流程的人数就会减少一人。不断
这样做下去,直到每个人都分到蛋糕为止。
第一轮流程结束后,拿到蛋糕的人可以保证手中的蛋糕是整个蛋糕价值的 1/n 。而对于每个没有拿到蛋糕的人来说,由于当他把蛋糕传下去之后,他后面的人只能减蛋糕不能加蛋糕,因此在他看来被拿走的那部分蛋糕一定不到 1/n ,剩余的蛋糕对他来说仍然是够分的。在接下来的流程中,类似的道理也同样成立。更为厉害的是,在此游戏规则下,大家会自觉地把手中的蛋糕修剪成自认为的 1/n ,耍赖不会给他带来任何好处。分蛋糕的人绝不敢把蛋糕切得更小,否则得到这块蛋糕的人就有可能是他;而如果他把一块大于 1/n 的蛋糕拱手交给了别人,在他眼里看来,剩下的蛋糕就不够分了,他最终分到的很可能远不及 1/n 。
这样一来,均衡分割问题便完美解决了。不过,正如前面我们说过的,均衡条件仅仅是一个最低的要求。在生活中,人们对“公平”的概念还有很多更不易形式化的理解。如果对公平的要求稍加修改,上述方案的缺陷便暴露了出来。让我们来看这样一种情况:如果 n 个人分完蛋糕后,每个人都自认为自己分得了至少 1/n 的蛋糕,但其中两个人还是打起来了,可能是什么原因呢?由于不同的人对蛋糕各部分价值的判断标准不同,因此完全有可能出现这样的情况——虽然自己已经分到了至少 1/n 份,但在他看来,有个人手里的蛋糕比他还多。看来,我们平常所说的公平,至少还有一层意思——每个人都认为别人的蛋糕都没我手里的好。在公平分割理论中,我们把满足这个条件的分蛋糕方案叫做免嫉妒分割 (envy-free division) 。
免嫉妒分割是一个比均衡分割更强的要求。如果每个人的蛋糕都没我多,那我的蛋糕至少有 1/n ,也就是说满足免嫉妒条件的分割一定满足均衡的条件。但反过来,满足均衡条件的分割却不一定是免嫉妒的。比方说, A 、 B 、 C 三人分蛋糕,但 A 只在乎蛋糕的体积, B 只关心蛋糕上的草莓颗数, C 只关心蛋糕上的巧克力块数。最后分得的结果是, A 、 B 、 C 三人的蛋糕体积相等,但 A 的蛋糕上什么都没有,B 的蛋糕上有一颗草莓两块巧克力,C 的蛋糕上有两颗草莓一块巧克力。因此,每个人从自己的角度来看都获得了整个蛋糕恰好 1/3 的价值,但这样的分法明显是不科学的—— B 、 C 两人会互相嫉妒。
之前我们介绍的两种均衡分割方案,它们都不满足免嫉妒性。就拿第一种方案来说吧,如果有三个人分蛋糕,按照规则,首先应该让第一人分第二人选,然后两人各自把自己的蛋糕切成三等份,让第三人从每个人手中各挑一份。这种分法能保证每个人获得至少 1/3 的蛋糕,但却可能出现这样的情况:第三个人从第二个人手中挑选的部分,恰好是第一个人非常想要的。这样一来,第一个人就会觉得第三个人手里的蛋糕更好一些,这种分法就不和谐了。

Ⅱ 分一个蛋糕,问怎样的分法才公平

事实上,对于两个人分蛋糕的情况,经典的“你来分我来选”的方法仍然是非常有效的,即使双方对蛋糕价值的计算方法不一致也没关系。首先,由其中一人执刀,把蛋糕切分成两块;然后,另一个人选出他自己更想要的那块,剩下的那块就留给第一个人。由于分蛋糕的人事先不知道选蛋糕的人会选择哪一块,为了保证自己的利益,他必须(按照自己的标准)把蛋糕分成均等的两块。这样,不管对方选择了哪一块,他都能保证自己总可以得到蛋糕总价值的 1/2 。
不过,细究起来,这种方法也不是完全公平的。对于分蛋糕的人来说,两块蛋糕的价值均等,但对于选蛋糕的人来说,两块蛋糕的价值差异可能很大。因此,选蛋糕的人往往能获得大于 1/2 的价值。一个简单的例子就是,蛋糕表面是一半草莓一半巧克力的。分蛋糕的人只对蛋糕体积感兴趣,于是把草莓的部分分成一块,把巧克力的部分分成一块;但他不知道,选蛋糕的人更偏爱巧克力一些。因此,选蛋糕的人可以得到的价值超过蛋糕总价值的一半,而分蛋糕的人只能恰好获得一半的价值。而事实上,更公平一些的做法是,前一个人得到所有草莓部分和一小块巧克力部分,后面那个人则分得剩下的巧克力部分。这样便能确保两个人都可以得到一半多一点的价值。
但是,要想实现上面所说的理想分割,双方需要完全公开自己的信息,并且要能够充分信任对方。然而,在现实生活中,这是很难做到的。考虑到分蛋糕的双方尔虞我诈的可能性,实现绝对公平几乎是不可能完成的任务。因此,我们只能退而求其次,给“公平”下一个大家普遍能接受的定义。在公平分割 (fair division) 问题中,有一个最为根本的公平原则叫做“均衡分割” (proportional division) 。它的意思就是, 如果有 n 个人分蛋糕,则每个人都认为自己得到了整个蛋糕至少 1/n 的价值 。从这个角度来说,“你
来分我来选”的方案是公平的——在信息不对称的场合中,获得总价值的一半已经是很让人满意的结果了。

如果分蛋糕的人更多,均衡分割同样能够实现,而且实现的方法不止一种。其中一种简单的方法就是,每个已经分到蛋糕的人都把自己手中的蛋糕分成更小的等份,让下一个没有分到蛋糕的人来挑选。具体地说,先让其中两个人用“你来分我来选”的方法,把蛋糕分成两块;然后,每个人都把自己手中的蛋糕分成三份,让第三个人从每个人手里各挑出一份来;然后,每个人都把自己手中的蛋糕分成四份,让第四个人从这三个人手中各挑选一份;不断这样继续下去,直到最后一个人选完自己的蛋糕。只要每个人在切蛋糕时能做到均分,无论哪块被挑走,他都不会吃亏;而第 n 个人拿到了每个人手中至少 1/n 的小块,合起来自然也就不会少于蛋糕总价值的 1/n 。虽然这样下来,蛋糕可能会被分得零零碎碎,但这能保证每个人手中的蛋糕在他自己看来都是不小于蛋糕总价值的 1/n 的。
还有一种思路完全不同的分割方案叫做“最后削减人算法”,它也能做到均衡分割。我们还是把总的人数用字母 n 来表示。首先,第一个人从蛋糕中切出他所认为的 1/n ,然后把这一小块传给第二个人。第二个人可以选择直接把这块蛋糕递交给第三个人,也可以选择从中切除一小块(如果在他看来这块蛋糕比 1/n 大了),再交给第三个人。以此类推,每个人拿到蛋糕后都有一次“修剪”的机会,然后移交给下一个人。规定,最后一个对蛋糕大小进行改动的人将获得这块蛋糕,余下的 n - 1 个人则从头开始重复刚才的流程,分割剩下的蛋糕。每次走完一个流程,都会有一个人拿到了令他满意的蛋糕,下一次重复该流程的人数就会减少一人。不断
这样做下去,直到每个人都分到蛋糕为止。
第一轮流程结束后,拿到蛋糕的人可以保证手中的蛋糕是整个蛋糕价值的 1/n 。而对于每个没有拿到蛋糕的人来说,由于当他把蛋糕传下去之后,他后面的人只能减蛋糕不能加蛋糕,因此在他看来被拿走的那部分蛋糕一定不到 1/n ,剩余的蛋糕对他来说仍然是够分的。在接下来的流程中,类似的道理也同样成立。更为厉害的是,在此游戏规则下,大家会自觉地把手中的蛋糕修剪成自认为的 1/n ,耍赖不会给他带来任何好处。分蛋糕的人绝不敢把蛋糕切得更小,否则得到这块蛋糕的人就有可能是他;而如果他把一块大于 1/n 的蛋糕拱手交给了别人,在他眼里看来,剩下的蛋糕就不够分了,他最终分到的很可能远不及 1/n 。

这样一来,均衡分割问题便完美解决了。不过,正如前面我们说过的,均衡条件仅仅是一个最低的要求。在生活中,人们对“公平”的概念还有很多更不易形式化的理解。如果对公平的要求稍加修改,上述方案的缺陷便暴露了出来。让我们来看这样一种情况:如果 n 个人分完蛋糕后,每个人都自认为自己分得了至少 1/n 的蛋糕,但其中两个人还是打起来了,可能是什么原因呢?由于不同的人对蛋糕各部分价值的判断标准不同,因此完全有可能出现这样的情况——虽然自己已经分到了至少 1/n 份,但在他看来,有个人手里的蛋糕比他还多。看来,我们平常所说的公平,至少还有一层意思——每个人都认为别人的蛋糕都没我手里的好。在公平分割理论中,我们把满足这个条件的分蛋糕方案叫做免嫉妒分割 (envy-free division) 。

免嫉妒分割是一个比均衡分割更强的要求。如果每个人的蛋糕都没我多,那我的蛋糕至少有 1/n ,也就是说满足免嫉妒条件的分割一定满足均衡的条件。但反过来,满足均衡条件的分割却不一定是免嫉妒的。比方说, A 、 B 、 C 三人分蛋糕,但 A 只在乎蛋糕的体积, B 只关心蛋糕上的草莓颗数, C 只关心蛋糕上的巧克力块数。最后分得的结果是, A 、 B 、 C 三人的蛋糕体积相等,但 A 的蛋糕上什么都没有,B 的蛋糕上有一颗草莓两块巧克力,C 的蛋糕上有两颗草莓一块巧克力。因此,每个人从自己的角度来看都获得了整个蛋糕恰好 1/3 的价值,但这样的分法明显是不科学的—— B 、 C 两人会互相嫉妒。
之前我们介绍的两种均衡分割方案,它们都不满足免嫉妒性。就拿第一种方案来说吧,如果有三个人分蛋糕,按照规则,首先应该让第一人分第二人选,然后两人各自把自己的蛋糕切成三等份,让第三人从每个人手中各挑一份。这种分法能保证每个人获得至少 1/3 的蛋糕,但却可能出现这样的情况:第三个人从第二个人手中挑选的部分,恰好是第一个人非常想要的。这样一来,第一个人就会觉得第三个人手里的蛋糕更好一些,这种分法就不和谐了。

Ⅲ 一块正方形蛋糕怎么平均分成5份,有几种请说怎么分

3.034382x10^183

这个数字太大 了,具体分的方法
将蛋糕长宽高各按5进行等分,因此形成一个5*5*5=75个小立方体,第一次随机的拿出25个,第二次在随机拿出25个,第三次随机拿25个第四次随机拿25个最后剩下的为一组,就将蛋糕等分了。
方法数为C25/125*c25/100*c25/75*c25/50*c25/25=125!/(4*25!)=3.034382x10^183

Ⅳ 一个蛋糕切成10等分怎么切

方法1:

首先,将刀面平行蛋糕外延,刀尖向下插入离边缘一小段距离的地方(不能太近也不能太远,自己控制)
接着,螺旋形旋转,把蛋糕从外到内弄成带状(以前大大口香糖那样)
然后小心的(小心应该也不是什么不现实的事) 把这带状的蛋糕拉开,对折,成U字型
这下还剩2刀,现在假设带状蛋糕总长10米,对折后5米,第2刀,在距离U字底部1米的地方,第三刀在距离第二刀2米的地方,这样就会有5片2米长的片状蛋糕

方法2:
找一把西瓜刀,中间烧红,把刀对折成72度,也就是一个圆的1/5
然后找到蛋糕的圆心,用手指,或者其他东西,画5条线5等分这个蛋糕(这个是基本的几何问题,不难,甚至你可以用量角器)

Ⅳ 一块正方形蛋糕怎么平均分成5份,有几种

很简单:把正方形的两个对边平均分成七份,然后把蛋糕横切成七个长方形就可以了。也就是每块蛋糕的面积是1/7边长*边长。打个比方,假设蛋糕的边长是42厘米,那么就可以把它分成6厘米宽,42厘米长的七块小蛋糕了

Ⅵ 如何一个蛋糕三刀分成七块

1、以圆形蛋糕图形为例。

如何选购健康的蛋糕

1.尽量买不加入氢化植物油的蛋糕。目前大部分蛋糕都被氢化植物油(植物奶油)产品所浸透,上面的“鲜奶油”是植脂奶油,下面的酥皮中也加入植物起酥油或麦淇淋,它们都含有对人体健康极为不利的反式脂肪酸。传统而健康的选择,是选择哪些加入真正的稀奶油和黄油的产品。

2.尽量买不含有酥皮的蛋糕。酥皮意味着必须加入大量脂肪,而且营养价值非常低。在目前情况下,通常加入的是植物起酥油,它含有反式脂肪。同样是高能量食品,奶酪蛋糕会好一些,因为至少奶酪中还含有大量的钙、维生素AD、B族维生素和蛋白质,而起酥油除了一些坏脂肪之外,什么也没有。

3.尽量买色素和香精少一点的蛋糕,特别是有孩子的家庭。蛋糕内外的颜色尽量接近原色,除了少量点缀,最好少用浓重的颜色。味道温和自然最好,那种冲鼻子的香味,通常意味着加入了大量廉价香精。

4.不要追求蛋糕加水果的所谓“健康”效果。水果蛋糕中的水果大部分都是罐头水果,起不到什么营养作用。少数猕猴桃片、草莓等,也不够新鲜,而且数量很少,仅为点缀,不如自己直接买鲜水果来吃。

5.不必买加了白巧克力片或黒巧克力片的蛋糕。蛋糕店用的巧克力,绝大部分都是代可可脂巧克力,含反式脂肪,却几乎没有其中的可可多酚,其健康价值是负数。

Ⅶ 两人分一个蛋糕,问怎样的分法才公平

平分
网络说我的回答太过简单,那我再多说几句。首先,什么叫平分?就是说,先找到蛋糕的中心点,一刀切下去,圆的半径就出来了,顺着半径往对面再切一刀,完美的平分。

Ⅷ 2个人分蛋糕怎么分才最公平

的偏向于逻辑。
如果有一块蛋糕,有几个人都有平等的权力可以吃,而且他们都是诚实守信的人,不会进行“地下交易”,也不会仗势欺人,那么他们应该怎样分才最公平?
首先考虑最简单的情况:2个人分蛋糕。这种情况下,最公平的分法是“我分你选”,由一个人切开蛋糕,另外一个人在2块蛋糕中选择一块,切的人拿剩下的一块。
那么再考虑复杂一点的情况:3个人分蛋糕。这种情况比2个人要复杂很多,关键是第一块蛋糕的产生和归属。只要有一个人得到一块蛋糕,那么剩下的2个人就可以用“我分你选”来分配剩下的蛋糕了。有一位数学家(原文中提到了这位数学家的名字,但是本人没有记住……其实2个人的方案也是他提出的)提出了最公平的方案:
假设这3个人分别是张三、李四和王五(原文中好像是汤姆之类的外国名字),首先由张三切下一块蛋糕,然后由李四选择。李四可以要这块蛋糕,这样就到此为止了。也可以动刀切大或者切小蛋糕(如何把切下来的蛋糕粘到另一块上面的问题我们不讨论),当然也可以不切。如果李四没有选择这块蛋糕,那么选择权转到王五身上。如果王五要了这块蛋糕,那么同样到此为止。如果王五不要,那么就由张三做出选择。如果张三不要,那么就要看李四有没有动刀修改过,如果李四修改过,那么李四必须无条件收下这块蛋糕;如果李四没有修改,那么这块蛋糕必须无条件交给张三。而无论在哪一步得出了第一块蛋糕的归属,都可以有剩下的2个人用“我分你选”的方法分配剩下的蛋糕。
如果分蛋糕的人多于3个呢?其实可以用类似于3个的方法来构造方案,当然方案会越来越复杂,但是绝对可以完成……

Ⅸ 如何把一个蛋糕分成六分

平均分成六分,其中五份分给五个人,把最后一份留在蛋糕盒里分给第六个人
请采纳答案,支持我一下。

Ⅹ 一块蛋糕,五个小朋友平均分配,只许切两刀,怎么分

两刀没的办法`三刀倒是知道`
我们假设这个蛋糕通常都是是圆的。
首先,过圆心呈十字状横竖各切一刀,然后在蛋糕顶部1/5厚度处横切一刀。
这样下来是4小块和4大块。
4小块全部给一个小朋友,正好是1/5;把其余4大块各是4/5*1/4=1/5
分给其他4个人,这样就实现了楼主提出的平分要求。

如果蛋糕是方的,或者是长的,或者还可能是五角星形的,那就不用说了吧,哈哈
不过真要是很不规则形状的,那就只好委屈一个小朋友了,就要尝试一刀砍死一个了……