當前位置:首頁 » 蛋糕圖片 » 初中數學公式的蛋糕圖片
擴展閱讀
當塗哪家生日蛋糕最好吃 2025-01-25 23:53:34
威利發蛋糕怎麼樣 2025-01-25 23:52:23
做蛋糕雞蛋少了影響什麼 2025-01-25 23:52:22

初中數學公式的蛋糕圖片

發布時間: 2022-09-07 07:50:39

A. 求初中所有數學公式(不要文字敘述)

高中數學合集網路網盤下載

鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取碼:1234

簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。

B. 初中數學必背重點公式大全 【絕對實用】

數學公式是很多人都比較重視的, 下面我就大家整理一下初中數學必背重點公式大全,僅供參考。

重點書學定理

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12 兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理三角形兩邊的和大於第三邊

16 推論三角形兩邊的差小於第三邊

17 三角形內角和定理三角形三個內角的和等於180°

18 推論①:直角三角形的兩個銳角互余

19 推論②:三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論③:三角形的一個外角大於任何一個和它不相鄰的內角

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac0

拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h

正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'

圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h

斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長

柱體體積公式 V=s*h 圓柱體 V=pi*r2h

實用工具:常用數學公式

乘法與因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|

-|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根與系數的關系

X1+X2=-b/aX1*X2=c/a

註:韋達定理

判別式

b2-4ac=0 註:方程有兩個相等的實根

b2-4ac>0 註:方程有兩個不等的實根

b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

以上就是我為大家整理的,初中數學必背重點公式大全,希望能幫助到大家!!

C. 初中數學所有公式表

常用數學公式:

1、乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

2、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b〈=〉-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|

3、一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

4、根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac〉0 註:方程有兩個不等的實根
b2-4ac〈0 註:方程沒有實根,有共軛復數根

5、三角函數公式
兩角和公式

6、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

7、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

8、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

9、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)


10、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

11、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a


12、半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

13、cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

14、tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

15、ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))


和差化積
16、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

17、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

18、sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

19、+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

20、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB


某些數列前n項和

21、1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

22、2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

23、13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3


24、正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑


25、餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角


26、圓的標准方程(x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標


27、圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F〉0


28、拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py


29、直稜柱側面積S=c*h 斜稜柱側面積 S=c'*h


30、正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'


31、圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2


32、圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l


33、弧長公式 l=a*r a是圓心角的弧度數r 〉0 扇形面積公式 s=1/2*l*r


34、錐體體積公式V=1/3*S*H圓錐體體積公式 V=1/3*pi*r2h


35、斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長


36、柱體體積公式 V=s*h 圓柱體 V=pi*r2h

(3)初中數學公式的蛋糕圖片擴展閱讀

部分基本公式

1 過兩點有且只有一條直線


2 兩點之間線段最短


3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7平行公理經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9同位角相等,兩直線平行

10內錯角相等,兩直線平行

11同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17三角形內角和定理三角形三個內角的和等於180°

18 推論1直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

D. 初中必背88個數學公式

如下:

一、長方形的周長=(長+寬)×2=2(a+b)=(a+b)×2

二、正方形的周長=邊長×4=4a

三、圓的周長=圓周率×直徑=πd=圓周率×半徑×2=2πr

四、長方形的面積=長×寬S=ab

五、正方形的面積=邊長×邊長S=a²

六、三角形的面積=底×高÷2S=ah÷2

七、平行四邊形的面積=底×高S=ah

八、梯形的面積=(上底+下底)×高÷2S=(a+b)h÷2

九、直徑=半徑×2d=2r

十、半徑=直徑÷2r=d÷2

十一、圓的面積=圓周率×半徑×半徑

十二、三角形的面積=底×高÷2S=a×h÷2

十三、正方形的面積=邊長×邊長S=a×a

十四、長方形的面積=長×寬S=a×b

十五、平行四邊形的面積=底×高S=a×h

十六、梯形的面積=(上底+下底)×高÷2S=(a+b)h÷2

十七、內角和:三角形的內角和=180度

十八、長方體的體積=長×寬×高V=abc

十九、長方體(或正方體)的體積=底面積×高V=Sh

二十、正方體的體積=棱長×棱長×棱長V=aaa

E. 初中數學幾何公式大全

初中幾何公式包括:線、角、圓、正方形、矩形等數學學幾何的公式,下面給大家帶來一些關於初中數學幾何公式大全,希望對大家有所幫助。

1 同角或等角的餘角相等

2 過一點有且只有一條直線和已知直線垂直

3 過兩點有且只有一條直線

4 兩點之間線段最短

5 同角或等角的補角相等

6 直線外一點與直線上各點連接的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

21 全等三角形的對應邊、對應角相等

22邊角邊公理 有兩邊和它們的夾角對應相等的兩個三角形全等

23 角邊角公理 有兩角和它們的夾邊對應相等的兩個三角形全等

24 推論 有兩角和其中一角的對邊對應相等的兩個三角形全等

25 邊邊邊公理 有三邊對應相等的兩個三角形全等

26 斜邊、直角邊公理 有斜邊和一條直角邊對應相等的兩個直角三角形全等

27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點的集合

30 等腰三角形的性質定理 等腰三角形的兩個底角相等

31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊

32 等腰三角形的頂角平分線、底邊上的中線和高互相重合

33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等於60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半

38 直角三角形斜邊上的中線等於斜邊上的一半

39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42 定理1 關於某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線

44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上

45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱

46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a+b=c

47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a+b=c,那麼這個三角形是直角三角形

48定理 四邊形的內角和等於360°

49四邊形的外角和等於360°

50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°

51推論 任意多邊的外角和等於360°

52平行四邊形性質定理1 平行四邊形的對角相等

53平行四邊形性質定理2 平行四邊形的對邊相等

54推論 夾在兩條平行線間的平行線段相等

55平行四邊形性質定理3 平行四邊形的對角線互相平分

56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60矩形性質定理1 矩形的四個角都是直角

61矩形性質定理2 矩形的對角線相等

62矩形判定定理1 有三個角是直角的四邊形是矩形

63矩形判定定理2 對角線相等的平行四邊形是矩形

64菱形性質定理1 菱形的四條邊都相等

65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角

66菱形面積=對角線乘積的一半,即S=(a×b)÷2

67菱形判定定理1 四邊都相等的四邊形是菱形

68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69正方形性質定理1 正方形的四個角都是直角,四條邊都相等

70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71定理1 關於中心對稱的兩個圖形是全等的

72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱

74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

75等腰梯形的兩條對角線相等

76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77對角線相等的梯形是等腰梯形

78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那麼在其他直線上截得的線段也相等

79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半

82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h

83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d

84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d

85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例

87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊

89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)

92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94 判定定理3 三邊對應成比例,兩三角形相似(SSS)

95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似

96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

97 性質定理2 相似三角形周長的比等於相似比

98 性質定理3 相似三角形面積的比等於相似比的平方

99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值

100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

101圓是定點的距離等於定長的點的集合

102圓的內部可以看作是圓心的距離小於半徑的點的集合

103圓的外部可以看作是圓心的距離大於半徑的點的集合

104同圓或等圓的半徑相等

105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

109定理 不在同一直線上的三個點確定一條直線

110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

111推論1

①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

112推論2 圓的兩條平行弦所夾的弧相等

113圓是以圓心為對稱中心的中心對稱圖形

114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等

116定理 一條弧所對的圓周角等於它所對的圓心角的一半

117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形

120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

121①直線L和⊙O相交 d﹤r

②直線L和⊙O相切 d=r

③直線L和⊙O相離 d﹥r

122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線

123切線的性質定理 圓的切線垂直於經過切點的半徑

124推論1 經過圓心且垂直於切線的直線必經過切點

125推論2 經過切點且垂直於切線的直線必經過圓心

126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

127圓的外切四邊形的兩組對邊的和相等

128弦切角定理 弦切角等於它所夾的弧對的圓周角

129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等

130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等

初中數學幾何公式大全相關 文章 :

★ 2020初中數學幾何公式定理整理收集

★ 常見的初中數學公式

★ 初三數學函數幾何知識點總結

★ 初中幾何定理歸納

★ 初中數學知識點總結:常用的數學公式

★ 初一數學知識點公式定理大全

★ 初三中考數學幾何知識點歸納

★ 初中數學幾何知識點歸納

★ 中考數學公式大全

★ 初中數學解題方法大匯總

F. 初中所有數學公式整理歸納

要想學好初中數學,一定要熟練的掌握初中數學的公式,這是同學們解數學題的關鍵步驟。 這篇文章我給大家總結了初中數學的必背公式,接下來分享具體內容,供參考。

拋物線弦長公式

在拋物線y²=2px中,弦長公式為d=p+x 1 +x 2

在拋物線y²=-2px中,d=p-(x 1 +x 2 )。

在拋物線x²=2py中,弦長公式為d=p+y 1 +y 2

在拋物線x²=-2py中,弦長公式為d=p-(y 1 +y 2 )。

因式分解常用公式

1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7、三項完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8、三項立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

三角不等式

1、|a+b|≤|a|+|b|

2、|a-b|≤|a|+|b|

3、|a|≤b<=>-b≤a≤b

4、|a-b|≥|a|-|b|-|a|≤a≤|a|

圖形面積公式

直稜柱側面積:S=c*h

斜稜柱側面積:S=c'*h

正棱錐側面積:S=1/2c*h'

正稜台側面積:S=1/2(c+c')h'

圓台側面積:S=1/2(c+c')l=pi(R+r)l

球的表面積:S=4pi*r2

圓柱側面積:S=c*h=2pi*h

圓錐側面積:S=1/2*c*l=pi*r*l

弧長公式:l=a*r.a是圓心角的弧度數r>0

扇形面積公式:s=1/2*l*r

錐體體積公式:V=1/3*S*H

圓錐體體積公式:V=1/3*pi*r2h

斜稜柱體積:V=S'L註:其中,S'是直截面面積,L是側棱長

柱體體積公式:V=s*h;圓柱體V=pi*r2h

三角函數的轉化公式

sin(-α)=-sinα

cos(-α)=cosα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

sin(π-α)=sinα

cos(π-α)=-cosα

sin(π+α)=-sinα

tanα=sinα/cosα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

G. 數學公式初中必背公式

數學公式初中必背公式是如下:

一、長方形的周長=(長+寬)×2=2(a+b)=(a+b)×2

二、正方形的周長=邊長×4=4a

三、圓的周長=圓周率×直徑=πd=圓周率×半徑×2=2πr

四、長方形的面積=長×寬S=ab

五、正方形的面積=邊長×邊長S=a²

六、三角形的面積=底×高÷2S=ah÷2

七、平行四邊形的面積=底×高S=ah

八、梯形的面積=(上底+下底)×高÷2S=(a+b)h÷2

九、直徑=半徑×2d=2r

十、半徑=直徑÷2r=d÷2

十一、圓的面積=圓周率×半徑×半徑

十二、三角形的面積=底×高÷2S=a×h÷2

十三、正方形的面積=邊長×邊長S=a×a

十四、長方形的面積=長×寬S=a×b

十五、平行四邊形的面積=底×高S=a×h

十六、梯形的面積=(上底+下底)×高÷2S=(a+b)h÷2

十七、內角和:三角形的內角和=180度

十八、長方體的體積=長×寬×高V=abc

十九、長方體(或正方體)的體積=底面積×高V=Sh

二十、正方體的體積=棱長×棱長×棱長V=aaa