A. 一個蛋糕怎麼分十五份
你的問題問的不詳細,分成十五份分為等分和不等分兩種。一:等分。方法1:可以分成15的偶數倍的份數,在每份乘以倍數即可。比如分成15的2倍就是分成30份,然後每人2塊,分成15的4倍就是60份。每人4塊。方法2:如果有天平或者電子秤等稱重工具,可以先稱蛋糕總重量,然後除以15,等於每份的重量。二:不等分。任意切成15塊就OK了。
B. 蛋糕平均分成四份可以怎麼分方法越多越好
採用均衡分割方案。
具體的方法如下:
(1)由正方形的性質知,連接對邊的中點,能把正方形分成四個小的正方形,且每個的面積相等;
(2)由正方形的性質知,它的兩個對角線把正方形分成面積相等的四部分,故作出正方形的對角線即可;
(3)由於正方形是中心對稱圖形,故過對稱中心的兩條互相垂直的直線能把正方形分成面積相等的四部分面積。
(4)如果是圓形的蛋糕,也可以採用正方形的前兩種方法來切割;
(5)圓形蛋糕的切割方法可以從一個頂點來從中間切開,然後再根據中點原理來切割;
(6)圓形蛋糕的切割方法還可以採用平行線的方式切割,如下面第二張圖的第二個切割方法。
(2)大蛋糕如何分多份擴展閱讀
如果分蛋糕的人更多,均衡分割同樣能夠實現,而且實現的方法不止一種。其中一種簡單的方法就是,每個已經分到蛋糕的人都把自己手中的蛋糕分成更小的等份,讓下一個沒有分到蛋糕的人來挑選。
具體地說,先讓其中兩個人用「你來分我來選」的方法,把蛋糕分成兩塊;然後,每個人都把自己手中的蛋糕分成三份,讓第三個人從每個人手裡各挑出一份來;然後,每個人都把自己手中的蛋糕分成四份,讓第四個人從這三個人手中各挑選一份;不斷這樣繼續下去,直到最後一個人選完自己的蛋糕。
只要每個人在切蛋糕時能做到均分,無論哪塊被挑走,他都不會吃虧;而第 n 個人拿到了每個人手中至少 1/n 的小塊,合起來自然也就不會少於蛋糕總價值的 1/n。雖然這樣下來,蛋糕可能會被分得零零碎碎,但這能保證每個人手中的蛋糕在他自己看來都是不小於蛋糕總價值的 1/n 的。
C. 一個圓蛋糕,切三刀,怎樣才能切成五份,要一樣大。
將蛋糕看作一平面,當每切一刀也以前所切的刀痕都相交,且交點不重合
開始有1塊,第一刀多一塊,第2刀多2塊....第n刀多
n塊
則切
n
刀,有1+1+2+...n
塊,既(1+n)*n/2+1塊
切10刀,有56塊(1+10)*10/2+1
也可以想像如果平面上有n條直線,已經把平面分割成最多得塊數,在添加第n+1條直線時,就要使這條直線與先前的n條直線,全部相交,這樣這條直線上會出現n個交點,從而就有n+1條線段,也就是說添加了n+1個部分,設n條直線時有f(n)個部分,n+1線段時有f(n+1)的部分,所以有:
f(n+1)-f(n)=n+1
所以:f(n)-f(n-1)=n
f(n-1)-f(n-2)=n-1
f(n-2)-f(n-3)=n-2
.
.
.
.
+f(2)-f(1)=2
(疊加求和)
所以:f(n)-f(1)=(n^2+n-2)/2
所以:f(n)=(n^2+n+2)/2
所以:f(10)=56
D. 如何一個蛋糕三刀分成七塊
1、以圓形蛋糕圖形為例。
如何選購健康的蛋糕
1.盡量買不加入氫化植物油的蛋糕。目前大部分蛋糕都被氫化植物油(植物奶油)產品所浸透,上面的「鮮奶油」是植脂奶油,下面的酥皮中也加入植物起酥油或麥淇淋,它們都含有對人體健康極為不利的反式脂肪酸。傳統而健康的選擇,是選擇哪些加入真正的稀奶油和黃油的產品。
2.盡量買不含有酥皮的蛋糕。酥皮意味著必須加入大量脂肪,而且營養價值非常低。在目前情況下,通常加入的是植物起酥油,它含有反式脂肪。同樣是高能量食品,乳酪蛋糕會好一些,因為至少乳酪中還含有大量的鈣、維生素AD、B族維生素和蛋白質,而起酥油除了一些壞脂肪之外,什麼也沒有。
3.盡量買色素和香精少一點的蛋糕,特別是有孩子的家庭。蛋糕內外的顏色盡量接近原色,除了少量點綴,最好少用濃重的顏色。味道溫和自然最好,那種沖鼻子的香味,通常意味著加入了大量廉價香精。
4.不要追求蛋糕加水果的所謂「健康」效果。水果蛋糕中的水果大部分都是罐頭水果,起不到什麼營養作用。少數獼猴桃片、草莓等,也不夠新鮮,而且數量很少,僅為點綴,不如自己直接買鮮水果來吃。
5.不必買加了白巧克力片或黒巧克力片的蛋糕。蛋糕店用的巧克力,絕大部分都是代可可脂巧克力,含反式脂肪,卻幾乎沒有其中的可可多酚,其健康價值是負數。
E. 大中小三個蛋糕平均分三份要怎麼分
把3塊蛋糕拼在一起,然後平均切成3份就可以了。比如3塊3角形的並成一個四方形什麼的。也可以把中的分給一個人,從大的切一點小的下來,給小的那個人。
F. 如何將一塊圓形蛋糕平均分成7等塊哈哈
同意以上所有人~再發揚光大一下!
不太簡單分4步如下:
1.把蛋糕放在地上(地一定要臟!廁所就可以~這樣好奇的人就多!)
2.把這個問題悄悄告訴圍觀群眾,並說太棘手了(這點很重要)
3.你大聲宣布:「懸賞10分!或神秘禮物給解決問題的人!」
4.等一位說:「呵呵...橫切八份!」的高人出現。
於是大家符合著說「有道理有道理..同上」什麼什麼的說是遲那是快,剛說我吃吧我吃吧的那位少俠沖出來唰々々々々々々七刀搞定了!!!大家都靜(因為其實大家都不知道怎麼搞都是說說而已)站在人群中看熱鬧我也被這位少俠的勇氣震住了.............
這時含著眼淚的你看著無法復原的八塊~~含情默默的哭到我的七塊啊!!你怎麼變成八塊了啊!啊啊啊啊!!但是你還是挺了過來抱起上面七塊,留下1塊和10分靜靜的走出人群~(那位還擺著POS)
片刻之後人群沸騰了忘了你的失落,把少俠團團圍住(圍的別想跑)都在為少俠勇氣喝彩為少俠的收獲雀躍(N秒)同聲說到:恭喜你喜獲10分!吃完蛋糕才可以走!!!民變可怕啊!! 那位年輕的臉上飄過一小片愁雲(他在權衡中.......)
..............如果你們不想吃
....................那....那..就我吃吧 !
(閑的慌娛樂大眾,有冒犯某位的地方,見諒純屬虛構)
G. 一個蛋糕切三刀,怎樣才能平均分成5份
先把蛋糕邊緣做十等份,可以畫個圓做,做記號一,二,...,十。然後在記號一處切一刀(都是等分),記號三處,記號五處分別切一刀。分出的蛋糕會有4個一樣大的,2個小的,其中2個小的加在一起和大的是一樣大的,你可以畫圖看看就明白了,以後的事就不用我說的啦
H. 如何實現平等的分蛋糕
事實上,對於兩個人分蛋糕的情況,經典的「你來分我來選」的方法仍然是非常有效的,即使雙方對蛋糕價值的計算方法不一致也沒關系。首先,由其中一人執刀,把蛋糕切分成兩塊;然後,另一個人選出他自己更想要的那塊,剩下的那塊就留給第一個人。由於分蛋糕的人事先不知道選蛋糕的人會選擇哪一塊,為了保證自己的利益,他必須(按照自己的標准)把蛋糕分成均等的兩塊。這樣,不管對方選擇了哪一塊,他都能保證自己總可以得到蛋糕總價值的 1/2 。
不過,細究起來,這種方法也不是完全公平的。對於分蛋糕的人來說,兩塊蛋糕的價值均等,但對於選蛋糕的人來說,兩塊蛋糕的價值差異可能很大。因此,選蛋糕的人往往能獲得大於 1/2 的價值。一個簡單的例子就是,蛋糕表面是一半草莓一半巧克力的。分蛋糕的人只對蛋糕體積感興趣,於是把草莓的部分分成一塊,把巧克力的部分分成一塊;但他不知道,選蛋糕的人更偏愛巧克力一些。因此,選蛋糕的人可以得到的價值超過蛋糕總價值的一半,而分蛋糕的人只能恰好獲得一半的價值。而事實上,更公平一些的做法是,前一個人得到所有草莓部分和一小塊巧克力部分,後面那個人則分得剩下的巧克力部分。這樣便能確保兩個人都可以得到一半多一點的價值。
但是,要想實現上面所說的理想分割,雙方需要完全公開自己的信息,並且要能夠充分信任對方。然而,在現實生活中,這是很難做到的。考慮到分蛋糕的雙方爾虞我詐的可能性,實現絕對公平幾乎是不可能完成的任務。因此,我們只能退而求其次,給「公平」下一個大家普遍能接受的定義。在公平分割 (fair division) 問題中,有一個最為根本的公平原則叫做「均衡分割」 (proportional division) 。它的意思就是, 如果有 n 個人分蛋糕,則每個人都認為自己得到了整個蛋糕至少 1/n 的價值 。從這個角度來說,「你
來分我來選」的方案是公平的——在信息不對稱的場合中,獲得總價值的一半已經是很讓人滿意的結果了。
如果分蛋糕的人更多,均衡分割同樣能夠實現,而且實現的方法不止一種。其中一種簡單的方法就是,每個已經分到蛋糕的人都把自己手中的蛋糕分成更小的等份,讓下一個沒有分到蛋糕的人來挑選。具體地說,先讓其中兩個人用「你來分我來選」的方法,把蛋糕分成兩塊;然後,每個人都把自己手中的蛋糕分成三份,讓第三個人從每個人手裡各挑出一份來;然後,每個人都把自己手中的蛋糕分成四份,讓第四個人從這三個人手中各挑選一份;不斷這樣繼續下去,直到最後一個人選完自己的蛋糕。只要每個人在切蛋糕時能做到均分,無論哪塊被挑走,他都不會吃虧;而第 n 個人拿到了每個人手中至少 1/n 的小塊,合起來自然也就不會少於蛋糕總價值的 1/n 。雖然這樣下來,蛋糕可能會被分得零零碎碎,但這能保證每個人手中的蛋糕在他自己看來都是不小於蛋糕總價值的 1/n 的。
還有一種思路完全不同的分割方案叫做「最後削減人演算法」,它也能做到均衡分割。我們還是把總的人數用字母 n 來表示。首先,第一個人從蛋糕中切出他所認為的 1/n ,然後把這一小塊傳給第二個人。第二個人可以選擇直接把這塊蛋糕遞交給第三個人,也可以選擇從中切除一小塊(如果在他看來這塊蛋糕比 1/n 大了),再交給第三個人。以此類推,每個人拿到蛋糕後都有一次「修剪」的機會,然後移交給下一個人。規定,最後一個對蛋糕大小進行改動的人將獲得這塊蛋糕,餘下的 n - 1 個人則從頭開始重復剛才的流程,分割剩下的蛋糕。每次走完一個流程,都會有一個人拿到了令他滿意的蛋糕,下一次重復該流程的人數就會減少一人。不斷
這樣做下去,直到每個人都分到蛋糕為止。
第一輪流程結束後,拿到蛋糕的人可以保證手中的蛋糕是整個蛋糕價值的 1/n 。而對於每個沒有拿到蛋糕的人來說,由於當他把蛋糕傳下去之後,他後面的人只能減蛋糕不能加蛋糕,因此在他看來被拿走的那部分蛋糕一定不到 1/n ,剩餘的蛋糕對他來說仍然是夠分的。在接下來的流程中,類似的道理也同樣成立。更為厲害的是,在此游戲規則下,大家會自覺地把手中的蛋糕修剪成自認為的 1/n ,耍賴不會給他帶來任何好處。分蛋糕的人絕不敢把蛋糕切得更小,否則得到這塊蛋糕的人就有可能是他;而如果他把一塊大於 1/n 的蛋糕拱手交給了別人,在他眼裡看來,剩下的蛋糕就不夠分了,他最終分到的很可能遠不及 1/n 。
這樣一來,均衡分割問題便完美解決了。不過,正如前面我們說過的,均衡條件僅僅是一個最低的要求。在生活中,人們對「公平」的概念還有很多更不易形式化的理解。如果對公平的要求稍加修改,上述方案的缺陷便暴露了出來。讓我們來看這樣一種情況:如果 n 個人分完蛋糕後,每個人都自認為自己分得了至少 1/n 的蛋糕,但其中兩個人還是打起來了,可能是什麼原因呢?由於不同的人對蛋糕各部分價值的判斷標准不同,因此完全有可能出現這樣的情況——雖然自己已經分到了至少 1/n 份,但在他看來,有個人手裡的蛋糕比他還多。看來,我們平常所說的公平,至少還有一層意思——每個人都認為別人的蛋糕都沒我手裡的好。在公平分割理論中,我們把滿足這個條件的分蛋糕方案叫做免嫉妒分割 (envy-free division) 。
免嫉妒分割是一個比均衡分割更強的要求。如果每個人的蛋糕都沒我多,那我的蛋糕至少有 1/n ,也就是說滿足免嫉妒條件的分割一定滿足均衡的條件。但反過來,滿足均衡條件的分割卻不一定是免嫉妒的。比方說, A 、 B 、 C 三人分蛋糕,但 A 只在乎蛋糕的體積, B 只關心蛋糕上的草莓顆數, C 只關心蛋糕上的巧克力塊數。最後分得的結果是, A 、 B 、 C 三人的蛋糕體積相等,但 A 的蛋糕上什麼都沒有,B 的蛋糕上有一顆草莓兩塊巧克力,C 的蛋糕上有兩顆草莓一塊巧克力。因此,每個人從自己的角度來看都獲得了整個蛋糕恰好 1/3 的價值,但這樣的分法明顯是不科學的—— B 、 C 兩人會互相嫉妒。
之前我們介紹的兩種均衡分割方案,它們都不滿足免嫉妒性。就拿第一種方案來說吧,如果有三個人分蛋糕,按照規則,首先應該讓第一人分第二人選,然後兩人各自把自己的蛋糕切成三等份,讓第三人從每個人手中各挑一份。這種分法能保證每個人獲得至少 1/3 的蛋糕,但卻可能出現這樣的情況:第三個人從第二個人手中挑選的部分,恰好是第一個人非常想要的。這樣一來,第一個人就會覺得第三個人手裡的蛋糕更好一些,這種分法就不和諧了。
I. 把兩塊同樣大的蛋糕平均分給3個人,可以怎樣分
這個很容易分啊,把兩塊蛋糕每一塊都分為3份,這樣全部就6份,每個人得到兩份,這樣就好了。這樣也就實現了平均分給3個人的目的。
J. 把一個蛋糕分成6份怎麼分
這道題很簡單,蛋糕是一個周角,也就是360度
把蛋糕平均分成6份,求一份,就是
360/6=30度
每份24度,求份數
360/15=24度
總結一下規律(周角):
份數×每份度數=360度
360÷份數=每份度數
360÷每份度數=份數